Phosphoinositide 3-kinase and Forkhead, a switch for cell division.

نویسندگان

  • L Martínez-Gac
  • B Alvarez
  • Z García
  • M Marqués
  • M Arrizabalaga
  • A C Carrera
چکیده

Cell cycle progression is a tightly controlled process. To initiate cell division, mitogens trigger a number of early signals that promote the G(0)-G(1) transition by inducing cell growth and the activation of G(1) cyclins. Activation of cyclin E/cdk2 (cyclin-dependent kinase 2) at the end of G(1) is then required to trigger DNA synthesis (S phase entry). Among the early signals induced by mitogens, activation of PI3K (phosphoinositide 3-kinase) appears essential to induce cell cycle entry, as it regulates cell growth signalling pathways, which in turn determine the rate of cell cycle progression. Another mechanisms by which PI3K and its downstream effector protein kinase B regulate cell cycle entry is by inactivation of the FOXO (Forkhead Box, subgroup O) transcription factors, which induce expression of quiescence genes such as those encoding p27(kip), p130 and cyclin G2. PI3K/FOXO then work as a complementary switch: when PI3K is active, FOXO transcription factors are inactive. The switch is turned on and off at different phases of the cell cycle, thus regulating cell cycle progression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PI3K and mTOR inhibitor, NVP-BEZ235, is more toxic than X-rays in prostate cancer cells

Background: Radiotherapy and adjuvant androgen deprivation therapy have historically been the first treatment choices for prostate cancer but treatment resistance often limits the capacity to effectively manage the disease. Therefore, alternative therapeutic approaches are needed. Here, the efficacies of radiotherapy and targeting the pro-survival cell signaling components epidermal growth fact...

متن کامل

Phosphoinositide 3-kinase controls early and late events in mammalian cell division.

Phosphoinositide 3-kinase (PI3K) plays a crucial role in triggering cell division. To initiate this process, PI3K induces two distinct routes, of which one promotes cell growth and the other regulates cyclin-dependent kinases. Fine-tuned PI3K regulation is also required for later cell cycle phases. Here, we review the multiple points at which PI3K controls cell division and discuss its impact o...

متن کامل

NH2 terminus of serum and glucocorticoid-regulated kinase 1 binds to phosphoinositides and is essential for isoform-specific physiological functions.

Serum and glucocorticoid regulated kinase 1 (SGK1) has been identified as a key regulatory protein that controls a diverse set of cellular processes including sodium (Na(+)) homeostasis, osmoregulation, cell survival, and cell proliferation. Two other SGK isoforms, SGK2 and SGK3, have been identified, which differ most markedly from SGK1 in their NH(2)-terminal domains. We found that SGK1 and S...

متن کامل

Rho GTPases and phosphoinositide 3-kinase organize formation of branched dendrites.

Neurons receive information from other neurons via their dendritic tree. Dendrites and their branches result from alternating outgrowth and retraction. The Rho GTPases Rac and Cdc42 (cell division cycle 42) facilitate the outgrowth of branches, whereas Rho attenuates it. The mechanism of neurite retraction is unknown. Because the adenylyl cyclase activator forskolin causes numerous branched ext...

متن کامل

Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors.

Recently, the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors has been identified as direct targets of phosphoinositide 3-kinase-mediated signal transduction. The AFX (acute-lymphocytic-leukaemia-1 fused gene from chromosome X), FKHR (Forkhead in rhabdomyosarcoma) and FKHR-L1 (FKHR-like 1) transcription factors are directly phosphorylated by protein kinase B, resulting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 32 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004